Forged aluminum sleeves
Forged aluminum sleeves
1. Definition
Forged aluminum sleeves are cylindrical components made through a forging process, designed to connect, reinforce, or protect pipes and other structures. They are known for being lightweight while still offering good strength and durability.
2. Materials
These sleeves are typically made from aluminum alloys, such as:
6061 Aluminum: Known for its good mechanical properties and corrosion resistance, commonly used in structural applications.
7075 Aluminum: Offers higher strength and is often used in aerospace applications, though it may be less corrosion-resistant.
3. Manufacturing Process
Forging: The aluminum is heated to a malleable state and shaped under high pressure. This process refines the grain structure and enhances the mechanical properties of the material.
Machining: After forging, the sleeves may undergo machining to achieve precise dimensions and surface finishes.
Heat Treatment: Some aluminum alloys can be heat-treated to enhance strength and performance.
4. Applications
Forged aluminum sleeves are commonly used in:
Aerospace: For lightweight components that require high strength.
Automotive: In various applications, including structural components and fittings.
Industrial Equipment: For connecting pipes or reinforcing structures in machinery.
5. Advantages
Lightweight: Aluminum sleeves are significantly lighter than steel, making them ideal for applications where weight is a concern.
Good Strength-to-Weight Ratio: Provides adequate strength while minimizing weight.
Corrosion Resistance: Aluminum naturally forms a protective oxide layer, enhancing its resistance to corrosion.
Versatility: Can be customized for various applications, ensuring compatibility with different systems.
Data Needed for Quotation
1) Your own drawing
2) Your requirement on material and necessary dimensional data
3) Ask for recommend
Processing Materials
Case Hardened Comparison Table | |||||||
GB | ГOCT | EN | DIN | W.N. | JIS | AISI/SAE | |
15CrMn | 16MnCr5 | 16MnCr5 | 1.7131 | 5115 | |||
20CrMn | 20MnCr5 | 20MnCr5 | 1.7147 | 5120 | |||
12CrMo | 12XM | 13CrMo44 | 1.7335 | 4119 | |||
15CrMo | 15XM | 15CrMo5 | 1.7262 | SCM415 | |||
20CrMo | 20XM | 20CrMo5 | 1.7264 | SCM420 | 4118 | ||
25CrMo | 30XM | 25CrMo4 | 1.7218 | ||||
30CrMo | SCM430 | 4130 | |||||
35CrMo | 35XM | 34CrMo4 | 1.722 | SCM435 | 4135 | ||
42CrMo | EN19 | 42CrMo4 | 1.7225 | SCM440 | 4140 | ||
50CrMo4 | 1.7228 | ||||||
40Cr | 40X | 41Cr4 | |||||
38XC | |||||||
25Cr2MoV | 25X2M1Φ | 24CrMoV55 | 1.7733 | ||||
50CrVA | 50CrV4 | 1.8159 | SUP10 | ||||
31CrMoV9 | 1.8519 | ||||||
GCr15 | 100Cr6 | 100Cr6 | 1.3505 | 52100 | |||
20CrNiMo | 20XHM | 20NiCrMo2-2 | 21NiCrMo2 | 1.6523 | SNCM220 | 8620 | |
20XH3A | |||||||
20X2H4A | |||||||
17CrNiMo6 | 1.6587 | ||||||
18CrNiMo7-6 | 1.6587 | ||||||
34CrNiMo6 | 1.6582 | VCN150 | |||||
34NiCrMo16 | 35NiCrMo16 | 1.2766 | |||||
30CrNiMo8 | 1.658 | VCN200 | |||||
39NiCrMo3 | 1.651 | ||||||
34CrAlNi7 | 1.855 | ||||||
38CrMoAl | 38X2MОA | 41CrAlMo7 | 1.8509 | ||||
40CrNiMo | EN24 | 40NiCrMo8-4 | 1.6562 | SNCM439 | 4340 | ||
40CrNi | 40XH | 40NiCr6 | 1.5711 | ||||
20CrMnMo | 18XTM | SCM421 | |||||
40CrMnMo | 40XTM | SCM440 | |||||
30XTCA | |||||||
38XTH | |||||||
40XH2MA | |||||||
40X2H2MA | |||||||
38XH3MA | |||||||
38XH3MΦA |
Processing technology:
Application areas:
Automotive transmissions, medical equipment, metallurgical machinery, lifting equipment, ore equipment, power equipment, light industry equipment, etc
Packaging :